Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 4(5): 1189-1198, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38626334

RESUMO

Naïve T cells are key players in cancer immunosurveillance, even though their function declines during tumor progression. Thus, interventions capable of sustaining the quality and function of naïve T cells are needed to improve cancer immunoprevention.In this context, we studied the capacity of Urolithin-A (UroA), a potent mitophagy inducer, to enhance T cell-mediated cancer immunosurveillance.We discovered that UroA improved the cancer immune response by activating the transcription factor FOXO1 in CD8+ T cell. Sustained FOXO1 activation promoted the expression of the adhesion molecule L-selectin (CD62L) resulting in the expansion of the naïve T cells population. We found that UroA reduces FOXO1 phosphorylation favoring its nuclear localization and transcriptional activity. Overall, our findings determine FOXO1 as a novel molecular target of UroA in CD8+ T cells and indicate UroA as promising immunomodulator to improve cancer immunosurveillance. SIGNIFICANCE: Urolithin-A, a potent mitophagy inducer, emerges as a promising tool to enhance cancer immunosurveillance by activating the FOXO1 transcription factor in CD8+ T cells. This activation promotes the expansion of naïve T cells, offering a novel avenue for improving cancer immune response and highlighting UroA as a potential immunomodulator for bolstering our body's defenses against cancer.


Assuntos
Linfócitos T CD8-Positivos , Cumarínicos , Proteína Forkhead Box O1 , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proteína Forkhead Box O1/metabolismo , Humanos , Animais , Cumarínicos/farmacologia , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Vigilância Imunológica/efeitos dos fármacos , Monitorização Imunológica , Selectina L/metabolismo
2.
Nat Aging ; 3(9): 1057-1066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653255

RESUMO

Aging compromises hematopoietic and immune system functions, making older adults especially susceptible to hematopoietic failure, infections and tumor development, and thus representing an important medical target for a broad range of diseases. During aging, hematopoietic stem cells (HSCs) lose their blood reconstitution capability and commit preferentially toward the myeloid lineage (myeloid bias)1,2. These processes are accompanied by an aberrant accumulation of mitochondria in HSCs3. The administration of the mitochondrial modulator urolithin A corrects mitochondrial function in HSCs and completely restores the blood reconstitution capability of 'old' HSCs. Moreover, urolithin A-supplemented food restores lymphoid compartments, boosts HSC function and improves the immune response against viral infection in old mice. Altogether our results demonstrate that boosting mitochondrial recycling reverts the aging phenotype in the hematopoietic and immune systems.


Assuntos
Envelhecimento , Sistema Imunitário , Animais , Camundongos , Alimentos Fortificados , Células-Tronco Hematopoéticas , Mitocôndrias
3.
Front Immunol ; 13: 976628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203587

RESUMO

Despite the tremendous success of adoptive T-cell therapies (ACT) in fighting certain hematologic malignancies, not all patients respond, a proportion experience relapse, and effective ACT of most solid tumors remains elusive. In order to improve responses to ACT suppressive barriers in the solid tumor microenvironment (TME) including insufficient nutrient availability must be overcome. Here we explored how enforced expression of the high-affinity glucose transporter GLUT3 impacted tumor-directed T cells. Overexpression of GLUT3 in primary murine CD8+ T cells enhanced glucose uptake and increased glycogen and fatty acid storage, and was associated with increased mitochondrial fitness, reduced ROS levels, higher abundance of the anti-apoptotic protein Mcl-1, and better resistance to stress. Importantly, GLUT3-OT1 T cells conferred superior control of B16-OVA melanoma tumors and, in this same model, significantly improved survival. Moreover, a proportion of treated mice were cured and protected from re-challenge, indicative of long-term T cell persistence and memory formation. Enforcing expression of GLUT3 is thus a promising strategy to improve metabolic fitness and sustaining CD8+ T cell effector function in the context of ACT.


Assuntos
Linfócitos T CD8-Positivos , Transportador de Glucose Tipo 3/metabolismo , Melanoma Experimental , Animais , Ácidos Graxos , Glucose , Transportador de Glucose Tipo 3/genética , Glicogênio , Memória Imunológica , Melanoma Experimental/terapia , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Recidiva Local de Neoplasia , Espécies Reativas de Oxigênio , Microambiente Tumoral
4.
Front Immunol ; 13: 913184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958566

RESUMO

T cell activation is dependent upon the integration of antigenic, co-stimulatory and cytokine-derived signals and the availability and acquisition of nutrients from the environment. Furthermore, T cell activation is accompanied by reprogramming of cellular metabolism to provide the energy and building blocks for proliferation, differentiation and effector function. Transforming growth factor ß (TGFß) has pleiotropic effects on T cell populations, having both an essential role in the maintenance of immune tolerance but also context-dependent pro-inflammatory functions. We set out to define the mechanisms underpinning the suppressive effects of TGFß on mouse CD8+ T cell activation. RNA-sequencing analysis of TCR-stimulated T cells determined that Myc-regulated genes were highly enriched within gene sets downregulated by TGFß. Functional analysis demonstrated that TGFß impeded TCR-induced upregulation of amino acid transporter expression, amino acid uptake and protein synthesis. Furthermore, TCR-induced upregulation of Myc-dependent glycolytic metabolism was substantially inhibited by TGFß treatment with minimal effects on mitochondrial respiration. Thus, our data suggest that inhibition of Myc-dependent metabolic reprogramming represents a major mechanism underpinning the suppressive effects of TGFß on CD8+ T cell activation.


Assuntos
Linfócitos T CD8-Positivos , Fator de Crescimento Transformador beta , Animais , Citocinas/metabolismo , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948472

RESUMO

The capacity of T cells to identify and kill cancer cells has become a central pillar of immune-based cancer therapies. However, T cells are characterized by a dysfunctional state in most tumours. A major obstacle for proper T-cell function is the metabolic constraints posed by the tumour microenvironment (TME). In the TME, T cells compete with cancer cells for macronutrients (sugar, proteins, and lipid) and micronutrients (vitamins and minerals/ions). While the role of macronutrients in T-cell activation and function is well characterized, the contribution of micronutrients and especially ions in anti-tumour T-cell activities is still under investigation. Notably, ions are important for most of the signalling pathways regulating T-cell anti-tumour function. In this review, we discuss the role of six biologically relevant ions in T-cell function and in anti-tumour immunity, elucidating potential strategies to adopt to improve immunotherapy via modulation of ion metabolism.


Assuntos
Íons/metabolismo , Neoplasias/imunologia , Linfócitos T/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Transdução de Sinais , Microambiente Tumoral
6.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580431

RESUMO

In recent years, immunotherapy has become the most promising therapy for a variety of cancer types. The development of immune checkpoint blockade (ICB) therapies, the adoptive transfer of tumor-specific T cells (adoptive cell therapy (ACT)) or the generation of T cells engineered with chimeric antigen receptors (CAR) have been successfully applied to elicit durable immunological responses in cancer patients. However, not all the patients respond to these therapies, leaving a consistent gap of therapeutic improvement that still needs to be filled. The innate immune components of the tumor microenvironment play a pivotal role in the activation and modulation of the adaptive immune response against the tumor. Indeed, several efforts are made to develop strategies aimed to harness innate immune cells in the context of cancer immunotherapy. In this review, we describe the contribution of innate immune cells in T-cell-based cancer immunotherapy and the therapeutic approaches implemented to broaden the efficacy of these therapies in cancer patients.


Assuntos
Imunidade Inata/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/imunologia , Animais , Humanos , Neoplasias/imunologia
7.
Cell Rep ; 22(8): 2176-2189, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466742

RESUMO

Furin trafficking, and that of related proprotein convertases (PCs), may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN). Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.


Assuntos
Técnicas Biossensoriais , Compartimento Celular , Furina/metabolismo , Subtilisinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Endocitose , Endossomos/metabolismo , Exocitose , Transferência Ressonante de Energia de Fluorescência , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Melanoma/genética , Melanoma/patologia , Melanoma Experimental/patologia , Proteínas Mutantes/metabolismo , Proteólise , Frações Subcelulares/metabolismo , Especificidade por Substrato , Rede trans-Golgi/metabolismo
8.
Autophagy ; 10(12): 2251-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551675

RESUMO

How autophagic degradation is linked to endosomal trafficking routes is little known. Here we screened a collection of uncharacterized Drosophila mutants affecting membrane transport to identify new genes that also have a role in autophagy. We isolated a loss of function mutant in Snap29 (Synaptosomal-associated protein 29 kDa), the gene encoding the Drosophila homolog of the human protein SNAP29 and have characterized its function in vivo. Snap29 contains 2 soluble NSF attachment protein receptor (SNARE) domains and a asparagine-proline-phenylalanine (NPF motif) at its N terminus and rescue experiments indicate that both SNARE domains are required for function, whereas the NPF motif is in part dispensable. We find that Snap29 interacts with SNARE proteins, localizes to multiple trafficking organelles, and is required for protein trafficking and for proper Golgi apparatus morphology. Developing tissue lacking Snap29 displays distinctive epithelial architecture defects and accumulates large amounts of autophagosomes, highlighting a major role of Snap29 in autophagy and secretion. Mutants for autophagy genes do not display epithelial architecture or secretion defects, suggesting that the these alterations of the Snap29 mutant are unlikely to be caused by the impairment of autophagy. In contrast, we find evidence of elevated levels of hop-Stat92E (hopscotch-signal transducer and activator of transcription protein at 92E) ligand, receptor, and associated signaling, which might underlie the epithelial defects. In summary, our findings support a role of Snap29 at key steps of membrane trafficking, and predict that signaling defects may contribute to the pathogenesis of cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma (CEDNIK), a human congenital syndrome due to loss of Snap29.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fagossomos/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animais , Movimento Celular/fisiologia , Endossomos/metabolismo , Exossomos/metabolismo , Humanos , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...